Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Purpose: Because air pollution has been linked to glaucoma and AMD, we characterized the relationship between pollution and retinal structure. Methods: We examined data from 51,710 UK Biobank participants aged 40 to 69 years old. Ambient air pollution measures included particulates and nitrogen oxides. SD-OCT imaging measured seven retinal layers: retinal nerve fiber layer, ganglion cell-inner plexiform layer, inner nuclear layer, outer plexiform layer + outer nuclear layer, photoreceptor inner segments, photoreceptor outer segments, and RPE. Multivariable regression was used to evaluate associations between pollutants (per interquartile range increase) and retinal thickness, adjusting for age, sex, race, Townsend deprivation index, body mass index, smoking status, and refractive error. Results: Participants exposed to greater particulate matter with an aerodynamic diameter of <2.5 µm (PM2.5) and higher nitrogen oxides were more likely to have thicker retinal nerve fiber layer (β = 0.28 µm; 95% CI, 0.22-0.34; P = 3.3 × 10-20 and β = 0.09 µm; 95% CI, 0.04-0.14; P = 2.4 × 10-4, respectively), and thinner ganglion cell-inner plexiform layer, inner nuclear layer, and outer plexiform layer + outer nuclear layer thicknesses (P < 0.001). Participants resident in areas of higher levels of PM2.5 absorbance were more likely to have thinner retinal nerve fiber layer, inner nuclear layer, and outer plexiform layer + outer nuclear layers (β = -0.16 [95% CI, -0.22 to -0.10; P = 5.7 × 10-8]; β = -0.09 [95% CI, -0.12 to -0.06; P = 2.2 × 10-12]; and β = -0.12 [95% CI, -0.19 to -0.05; P = 8.3 × 10-4], respectively). Conclusions: Greater exposure to PM2.5, PM2.5 absorbance, and nitrogen oxides were all associated with apparently adverse retinal structural features.

Original publication





Invest Ophthalmol Vis Sci

Publication Date





Adult, Aged, Air Pollution, Biological Specimen Banks, Cross-Sectional Studies, Female, Humans, Male, Middle Aged, Nerve Fibers, Nitrogen Oxides, Particulate Matter, Photoreceptor Cells, Vertebrate, Retinal Diseases, Retinal Ganglion Cells, Retinal Pigment Epithelium, Surveys and Questionnaires, Tomography, Optical Coherence, United Kingdom